Seria BluE

3KT/3.6KT/4KT/5KT/6KT/8KT/10KT/12KT/15KT/17KT/20KT/22KT/23KT/25KT

Falownik podłączony do sieci

Instrukcja instalacji i obsługi

202104 Ver:1.0

Zawartość

1. Wprowadzenie	4
1.1 Opis produktu	4
1.2 Kontrola rozpakowywania	5
1.3 Opakowanie	6
1.4 Opcjonalne opakowanie	7
1.5 Przechowywanie falownika	7
2. Instrukcje bezpieczeństwa	8
2.1 Symbole bezpieczeństwa	8
2.2 Ogólne instrukcje bezpieczeństwa	9
2.3 Powiadomienie o użytkowaniu	11
3. Widok z góry	12
3.1 Wyświetlacz na panelu przednim	12
3.2 Wskaźnik stanu LED	12
3.3 Klawiatura (opcjonalna)	13
3.4 LCD (opcja)	13
4. Instalacja	14
4.1 Wybór lokalizacji dla falownika	14
4.2 Montaż falownika	17
4.3 Połączenia elektryczne	19
4.3.1 Podłączenie falownika po stronie PV	19
4.3.2 Podłączenie wyjścia AC	22
4.3.3 Zewnętrzne połączenie uziemienia	
4.3.4 Maksymalne zabezpieczenie nadprądowe (OCPD)	25
4.3.5 Połączenie monitorowania falownika	27
4.3.6 Połączenia miernika (opcjonalne)	28
4.3.7 Połączenia portu DRED (opcjonalnie)	29
5. Start & Stop	30
5.1 Uruchomienie falownika	30
5.2 Zatrzymanie falownika	31
6. Menu obsługi wyświetlacza LCD	32
6.1 Inicjalizacja	32
6.2 Główne menu cyklu-on	32
6.3 Interfejs użytkownika	34
6.4 Ustawienie	34

KSTAR

6.5 Zapytanie
6.6 Statystyki
7. Konserwacja
8. Rozwiązywanie problemów53
9. Specyfikacje 58
Tabela parametrów technicznych falownika -1 58
Tabela parametrów technicznych falownika -2
Tabela parametrów technicznych falownika -361
Tabela parametrów technicznych falownika -463
Tabela parametrów technicznych falownika -565
10. Zapewnienie jakości
11. Informacje kontaktowe

1. Wprowadzenie

1.1 Opis produktu

Nowa generacja domowych trójfazowych falowników fotowoltaicznych podłączonych do sieci przekształca energię słoneczną w energię elektryczną za pośrednictwem falownika, który jest wykorzystywany przez producentów energii. Zastosowano w nim nową konstrukcję i zintegrowano różne funkcjonalne urządzenia w celu dostosowania do różnych złożonych środowisk instalacyjnych.

Wyświetlacz LCD jest opcjonalny

Obiekt	Opis	Klasa DVC
1	PV1, PV2	DVC C
2	WYJŚCIE PRĄDU PRZEMIENNEGO	DVC C

1.2 Kontrola rozpakowywania

Przed otwarciem opakowania falownika należy sprawdzić, czy opakowanie zewnętrzne nie jest uszkodzone. Po otwarciu opakowania należy sprawdzić, czy wygląd falownika nie jest uszkodzony lub czy nie brakuje akcesoriów. Rozmieszczenie akcesoriów jest następujące:

1.3 Opakowanie

Po otrzymaniu falownika należy upewnić się, że zawiera on wszystkie wymienione poniżej części:

Obiekt	Opis	Model	Liczba
1	Falownik fotowoltaiczny		1
	typu grid tie		I
9	Wspornik		1
2	ścienny/biegunowy		Ι
3	Śruby blokujące		2
4	Zacisk przyłączeniowy PV	3-15K	2
4	(+,-)	15-25K	4
5	Osłona ochronna		1
	dla zacisku AC		ļ
6	Podręcznik		1
7	Terminal OT		6
8	Wkręt samogwintujący i		2/2
	rura rozprężna		5/5

1.4 Opcjonalne opakowanie

Obiekt	Opis	Liczba
1	Złącze DRM	1
2	Złącze miernika 485	1
3	WIFI /GPRS Stick	1
4	Kabel 1xCT i COM	1

1.5 Przechowywanie falownika

Jeśli falownik nie zostanie natychmiast zainstalowany, wymagane jest jego prawidłowe przechowywanie.

- Falownik należy przechowywać w oryginalnym opakowaniu.

- Temperatura przechowywania musi zawsze wynosić od -40°C do +70°C, a wilgotność względna przechowywania musi zawsze wynosić od 0 do 95%, bez kondensacji.

- W przypadku przechowywania w stosie, liczba warstw nigdy nie powinna przekraczać limitu oznaczonego na zewnętrznej stronie opakowania.

- Opakowanie powinno być ustawione pionowo.

- Jeśli falownik był przechowywany dłużej niż pół roku, wykwalifikowany personel powinien go dokładnie sprawdzić i przetestować przed użyciem.

2. Instrukcje bezpieczeństwa

Nieprawidłowe użytkowanie może spowodować potencjalne porażenie prądem elektrycznym lub oparzenia. Niniejsza instrukcja zawiera ważne wskazówki, których należy przestrzegać podczas instalacji i konserwacji. Przed użyciem należy uważnie przeczytać niniejszą instrukcję i zachować ją na przyszłość.

Skontaktuj się z najbliższą stacją utylizacji odpadów niebezpiecznych, gdy produkty lub komponenty zostaną wyrzucone.

2.1 Symbole bezpieczeństwa

Poniżej wymieniono symbole bezpieczeństwa używane w niniejszej instrukcji, które podkreślają potencjalne zagrożenia bezpieczeństwa i ważne informacje dotyczące bezpieczeństwa:

	OSTRZEŻENIE:
	Symbol OSTRZEŻENIE oznacza ważne instrukcje bezpieczeństwa,
	których nieprzestrzeganie może spowodować poważne
	obrażenia lub śmierć.
	UWAGA:
	Symbol UWAGA oznacza ważne instrukcje bezpieczeństwa,
	których nieprzestrzeganie może spowodować uszkodzenie lub
	zniszczenie falownika.
	UWAGA:
4	Symbol PRZESTROGA, RYZYKO PORAŻENIA PRĄDEM oznacza
	ważne instrukcje bezpieczeństwa, których nieprzestrzeganie

	może spowodować porażenie prądem.	
	UWAGA:	
	Symbol UWAGA, GORĄCA POWIERZCHNIA oznacza instrukcje	
	bezpieczeństwa, których nieprzestrzeganie może spowodować	
	oparzenia.	

2.2 Ogólne instrukcje bezpieczeństwa

_	OSTRZEŻENIE:
	Do interfejsów RS485 i USB można podłaczać wyłacznie
	urządzenia zgodne z SELV (EN 69050).
	OSTRZEŻENIE:
	Nie podłączaj dodatniego (+) lub ujemnego (-) panelu
	fotowoltaicznego do uziemienia, ponieważ może to
	spowodować poważne uszkodzenie falownika.
	OSTRZEŻENIE:
	Instalacje elektryczne muszą być wykonane zgodnie z lokalnymi i
	krajowymi normami bezpieczeństwa elektrycznego.
	OSTD7EŻENIE:
	Nie dotykać zadných wewnętrzných części pod napięciem przez
5min	5 minut po odłączeniu od sieci energetycznej i wejścia PV.
	OSTRZEŻENIE:
	Aby zmniejszyć ryzyko pożaru, w obwodach podłączonych do
	falownika wymagane są zabezpieczenia nadprądowe (OCPD).
	OCPD DC należy zainstalować zgodnie z lokalnymi
	wymaganiami. Wszystkie przewody źródłowe i wyjściowe
	obwodu fotowoltaicznego powinny być wyposażone w
	odłączniki zgodne z artykułem 690, część II NEC.

UWAGA:
Ryzyko porażenia prądem. Nie zdejmować pokrywy. Wewnątrz
nie ma żadnych części, które mogą być naprawiane przez
użytkownika. Serwisowanie należy powierzyć wykwalifikowanym
i akredytowanym technikom serwisowym.
UWAGA:
Panele fotowoltaiczne (panele słoneczne) dostarczają napięcie
stałe, gdy są wystawione na działanie promieni słonecznych.
Moduł fotowoltaiczny używany z falownikiem musi posiadać klasę A zgodnie z normą IEC 61730.

2.3 Powiadomienie o użytkowaniu

Falownik został skonstruowany zgodnie z obowiązującymi przepisami bezpieczeństwa i wytycznymi technicznymi. Falownika należy używać WYŁĄCZNIE w instalacjach spełniających poniższe specyfikacje:

1. Wymagana jest stała instalacja.

2. Instalacja elektryczna musi spełniać wszystkie obowiązujące przepisy i normy.

3. Falownik należy zainstalować zgodnie z instrukcjami podanymi w niniejszej instrukcji.

4. Falownik musi być zainstalowany zgodnie z prawidłowymi specyfikacjami technicznymi.

5. Aby uruchomić falownik, należy włączyć główny wyłącznik zasilania sieciowego (AC) przed włączeniem izolatora DC panelu słonecznego. Aby zatrzymać falownik, należy włączyć główny wyłącznik zasilania sieciowego (AC).

Wyłącznik (AC) musi być wyłączony przed wyłączeniem izolatora DC panelu słonecznego.

3. Widok z góry

3.1 Wyświetlacz na panelu przednim

Rysunek 3.1 Wyświetlacz panelu przedniego

3.2 Wskaźnik stanu LED

Wskaźnik stanu LED może świecić na czerwono i zielono. Gdy wskaźnik jest włączony, oznacza to, że urządzenie jest zasilane. Gdy wskaźnik świeci się na czerwono, oznacza to stan alarmu; gdy wskaźnik świeci się na zielono, oznacza to stan pracy.

Światło	Status	Opis
Ŀ	ON	CHECKING: Urządzenie jest w trakcie sprawdzania.
	ON	Generowanie: Urządzenie generuje moc.
	mrugnięcie	Generowanie: miganie oznacza, że falownik jest podłączony do sieci energetycznej.

	mrugnięcie	Alarm: falownik posiada sygnał alarmowy.
()	ON	BŁĄD: Wystąpił błąd i urządzenie nie generuje sygnału.

Tabela 3.1 Wskaźnik stanu

3.3 Klawiatura (opcja)

Na panelu przednim falownika znajdują się cztery przyciski, od lewej do prawej: ESC, UP, DOWN i

Klawisze ENTER. Klawiatura służy do:

- Przewijanie wyświetlanych opcji (przyciski W GÓRĘ i W DÓŁ);
- Dostęp do modyfikacji regulowanych ustawień (przyciski ESC i ENTER).

3.4 LCD (opcja)

Czterowierszowy wyświetlacz ciekłokrystaliczny (LCD) znajduje się na przednim panelu falownika i wyświetla następujące informacje:

- Stan pracy falownika i dane;
- Komunikaty serwisowe dla operatora;
- Komunikaty alarmowe i wskazania błędów.

Informacje można również uzyskać za pośrednictwem WIFI / GPRS.

KSTAR

4. Instalacja

4.1 Wybór lokalizacji dla falownika

Aby wybrać lokalizację dla falownika, należy wziąć pod uwagę następujące kryteria: - Nie należy instalować urządzenia w małych, zamkniętych przestrzeniach, w których powietrze nie może swobodnie cyrkulować. Aby uniknąć przegrzania, należy zawsze upewnić się, że przepływ powietrza wokół falownika nie jest zablokowany. - Wystawienie na bezpośrednie działanie promieni słonecznych zwiększy temperaturę pracy falownika i może spowodować ograniczenie mocy wyjściowej. Firma KSTAR zaleca instalowanie falownika w miejscach, w których nie jest on narażony na bezpośrednie działanie promieni słonecznych lub deszczu.

 Aby uniknąć przegrzania, przy wyborze miejsca instalacji falownika należy wziąć pod uwagę temperaturę otoczenia. KSTAR zaleca użycie osłony przeciwsłonecznej minimalizującej bezpośrednie działanie promieni słonecznych, gdy temperatura otoczenia wokół urządzenia przekracza 104°F/40°C.

Rysunek 4.1 Zalecane miejsca instalacji

- Zamontować na ścianie lub mocnej konstrukcji zdolnej utrzymać ciężar.

- Falownik należy montować pionowo z maksymalnym nachyleniem +/-5°. Jeśli zamontowany falownik jest nachylony pod kątem większym niż maksymalny podany, rozpraszanie ciepła może zostać zahamowane, co może skutkować niższą niż oczekiwana mocą wyjściową.

 W przypadku instalacji 1 lub więcej falowników w jednym miejscu należy zachować odstęp co najmniej 300 mm między każdym falownikiem lub innym obiektem (w przypadku dodania zadaszenia należy również zachować odstęp 50 cm). Dolna część falownika powinna znajdować się w odległości 500 mm od podłoża.

Rysunek 4.2 Wolna przestrzeń montażowa falownika

- Należy wziąć pod uwagę widoczność wskaźników stanu LED i wyświetlacza LCD znajdującego się na przednim panelu falownika.

 Jeśli falownik ma zostać zainstalowany w ograniczonej przestrzeni, należy zapewnić odpowiednią wentylację.

UWAGA:

Niczego nie należy przechowywać na falowniku ani kłaść na nim.

4.2 Montaż falownika

Wymiary uchwytu ściennego:

Rysunek 4.3 Montaż falownika na ścianie

Instrukcje dotyczące montażu falownika można znaleźć na Rysunku 4.4 i Rysunku 4.5.

Falownik należy zamontować pionowo. Poniżej przedstawiono kroki montażu falownika:

1. Zgodnie z rysunkiem 4.2 wybierz wysokość montażu wspornika i zaznacz otwór montażowy. Po zaznaczeniu, wybić otwór zgodnie z oznaczeniem. W przypadku wiercenia w ścianie z cegły, do mocowania należy użyć kołków rozporowych.

Rysunek 4.4 Montaż falownika na ścianie

2. Upewnij się, że wspornik jest ustawiony poziomo, a otwór montażowy (jak pokazano na rysunku 4.4)

i wbić młotkiem rurę rozprężną w ścianę.

3. Użyj odpowiednich śrub, aby przymocować wspornik do ściany.

OSTRZEŻENIE:

Falownik musi być zamontowany pionowo. Nie wolno kłaść urządzenia poziomo przez dłuższy czas, co wpłynie na rozpraszanie ciepła.

4.Podnieś falownik (uważaj, aby nie nadwyrężyć ciała) i wyrównaj tylny wspornik falownika z wypukłą częścią wspornika montażowego. Zawieś falownik na wsporniku montażowym i upewnij się, że falownik jest dobrze zamocowany (patrz Rysunek 4.5).

Rysunek 4.5 Wspornik do montażu na ścianie

5. Użyj śrub M5*16 w akcesoriach, aby zablokować falownik na wsporniku montażowym.

4.3 Połączenia elektryczne

4.3.1 Podłączenie falownika po stronie PV

Podłączenie elektryczne falownika musi przebiegać zgodnie z poniższymi krokami:

- 1. Wyłącz główny wyłącznik zasilania sieciowego (AC).
- 2. Wyłącz izolator prądu stałego.
- 3. Podłącz złącze wejściowe PV do falownika.

Sprawdź, czy biegunowość kabla połączeniowego łańcucha fotowoltaicznego jest prawidłowa i upewnij się, że napięcie obwodu otwartego w żadnych warunkach nie przekracza górnego limitu wartości wejściowej falownika 1100V.
Nie należy podłączać dodatniego lub ujemnego bieguna panelu fotowoltaicznego do uziemienia, ponieważ może to spowodować poważne uszkodzenie falownika.
Przed podłączeniem należy upewnić się, że polaryzacja napięcia wyjściowego panelu fotowoltaicznego jest zgodna z symbolami "PV+" i "PV-".

Rysunek 4.6 Złącze PV+ Rysunek 4.7 Złącze PV-

Sprawdź dodatnią i ujemną polaryzację łańcuchów fotowoltaicznych i podłącz złącza fotowoltaiczne do właściwych zacisków. Nadmierna temperatura może spowodować poważne uszkodzenie falownika i złącza.

Należy używać zatwierdzonego kabla DC dla systemu PV.

T 1 11	Przekrój (mm²)		
lyp kabla	Zasięg	Zalecana wartość	
Przemysłowy kabel	40.00/12		
fotowoltaiczny	4,0-6,0 (12-	4.0 (12AWG)	
(model: PV1-F)	TUAWG)		

Kroki montażu złączy DC są wymienione poniżej:

1. zdjąć przewód DC na około 7 mm, zdemontować nakrętkę złącza.

Rysunek 4.8 Demontaż nakrętki zaślepki złącza

2. Włóż przewód do nakrętki złącza i styku.

Illustracja 4.9 Włóż przewód do złącza Nakrętka kołpakowa i kołek stykowy

3. Zacisnąć styk na przewodzie za pomocą odpowiedniej zaciskarki do przewodów.

Rysunek 4.10 Zaciśnięcie styku na przewodzie

4. Włóż bolec stykowy do górnej części złącza i przykręć nakrętkę kołpakową do górnej części złącza.

Rysunek 4.11 Złącze z nakręconą nakrętką kołpakową

5. Następnie podłącz złącza DC do falownika. Małe kliknięcie potwierdzi połączenie.

Rysunek 4.12 Podłączanie złączy DC do falownika

4.3.2 Podłączenie wyjścia AC

OSTRZEŻENIE:

Istnieją "L1,L2,L3", "N", "PE", , przewód liniowy sieci musi być podłączony do zacisku "L1,L2,L3"; przewód neutralny sieci musi być podłączony do zacisku "N"; uziemienie sieci musi być podłączone do "PE".

/	в	Object	Description	Value
	u	A	External diameter	10mm
	12	В	Copper conductor cross-section	4mm ²

	Zakres średnic	Przekrój	Zalecana średnica
Model	zewnętrznych kabli	poprzeczny	żyły przekroju kabla
		Zakres	
3-15K	φ16~φ23mm	4-6 mm ²	4 mm²
17-25K	φ16~φ23mm	8-16 mm²	10 mm²

Podłączenie falownika po stronie sieci

1. najpierw sprawdź wyłącznik obwodu AC i odłącz falownik od sieci

2. Za pomocą ściągacza izolacji zdejmij zewnętrzną powierzchnię kabla na długości około 50 mm, a następnie zdejmij powłokę z 5 przewodów, jak pokazano na

poniższym rysunku;

Krok 1. Zdejmij warstwę ochronną i warstwę izolacyjną na określoną długość, jak opisano na poniższym rysunku.

Krok 2. Przygotuj kabel i zaciśnij zacisk OT.

Krok 3: Postępuj zgodnie z instrukcjami i podłącz kabel do odpowiednich zacisków.

Krok 4. Zabezpiecz skrzynkę przyłączeniową, zapnij klamrę i zabezpiecz ją śrubą.

Rysunek 4.13 Podłączanie złącza AC do falownika

4.3.3 Zewnętrzne połączenie uziemienia

Po prawej stronie falownika znajduje się zewnętrzne złącze uziemienia. Przygotuj zaciski OT. Użyj odpowiednich narzędzi do zaciśnięcia końcówki na zacisku.

Rysunek 4.14 Podłączanie zewnętrznego przewodu uziemiającego

4.3.4 Maksymalne zabezpieczenie nadprądowe (OCPD)

Aby chronić przewody przyłączeniowe PV i AC falownika, KSTAR zaleca zainstalowanie wyłączników, które chronią przed przetężeniem. Poniższa tabela określa wartości znamionowe OCPD dla falowników.

Falownik	Znamionowe napięcie wyjściowe (V)	Moc znamionowa prąd (A)	Prąd dla ochrony urządzenie (A)
BluE-3KT-M1	400	4.4	6.6
BluE-3.6KT-M1	400	5.2	7.8
BluE-4KT-M1	400	5.8	8.7
BluE-5KT-M1	400	7.3	10.95
BluE-6KT-M1	400	8.7	13.05
BluE-8KT-M1	400	11.6	17.4
BluE-10KT-M1	400	14.5	21.75
BluE-12KT-M1	400	17.4	26.1
BluE-15KT-M1	400	21.7	32.55
BluE-15KT-M3	400	21.7	32.55
BluE-17KT-M1	400	24.6	36.9
BluE-20KT-M1	400	29	43.5
BluE-22KT-M1	400	31.9	47.85
BluE-23KT-M1	400	33.3	49.95
BluE-25KT-M1	400	36.2	54.3

Tabela 4.3 Poziom OCPD sieci energetycznej

Falownik	Wejście znamionowe napięcie(V)	Maks. wejście prąd (A)	Prąd dla ochrony urządzenie (A)
BluE-3KT-M1	650	15	20
BluE-3.6KT-M1	650	15	20
BluE-4KT-M1	650	15	20

BluE-5KT-M1	650	15	20
BluE-6KT-M1	650	15	20
BluE-8KT-M1	650	15	20
BluE-10KT-M1	650	15	20
BluE-12KT-M1	650	15	20
BluE-15KT-M1	650	30 /15	40
BluE-15KT-M3	650	15	20
BluE-17KT-M1	650	30	50
BluE-20KT-M1	650	30	50
BluE-22KT-M1	650	30	50
BluE-23KT-M1	650	30	50
BluE-25KT-M1	650	30	50

Tabela 4.4 Oceny PV OCPD

4.3.5 Połączenie monitorowania falownika

Falownik może być monitorowany przez Wi-Fi lub GPRS. Wszystkie urządzenia komunikacyjne BluE są opcjonalne. Instrukcje podłączania znajdują się w instrukcjach instalacji urządzeń monitorujących BluE.

Falownik jest wyposażony w standardowe porty komunikacyjne RS485 i WLAN/GPRS, a port komunikacyjny RS485 jest używany głównie do aktualizacji oprogramowania, port komunikacyjny WLAN/GPRS służy do bezprzewodowego monitorowania falownika.

Szpilka	Opis	Szpilka	Opis
1	VCC	3	485A
2	GND	4	485B

Tabela 4.5

Rysunek 4.21 Port WLAN/GPRS falownika

4.3.6 Połączenia miernika (opcjonalne)

Ten falownik ma zintegrowaną funkcję ograniczenia eksportu. Aby korzystać z tej funkcji, należy zainstalować przekładnik prądowy, patrz poniższy rysunek. Przekładnik prądowy powinien być zamontowany wokół przewodu pod napięciem po stronie sieci głównej jednostki odbiorczej. Użyj strzałki wskazującej kierunek przepływu na przekładniku prądowym, aby upewnić się, że jest on zamontowany we właściwej orientacji. Strzałka powinna być skierowana w stronę sieci, a nie obciążenia.

Rysunek 4.22 Schemat połączenia pomiędzy falownikiem a licznikiem (Falownik po prawej stronie obciążenia)

Szpilka	Opis	Szpilka	Opis
1	NC	3	485A elektroda dodatnia
2	NC	4	Biegun ujemny 485B

Postępuj zgodnie z poniższym rysunkiem, aby zmontować złącze CT.

Rysunek 4.23 Złącze CT

4.3.7 Połączenia portu DRED (opcjonalnie)

DRED oznacza urządzenie umożliwiające reakcję na zapotrzebowanie. Norma AS/NZS 4777.2:2015 wymaga, aby falownik obsługiwał tryb odpowiedzi na zapotrzebowanie (DRM). Ta funkcja jest przeznaczona dla falowników zgodnych z normą AS/NZS 4777.2:2015. Falownik BluE jest w pełni zgodny ze wszystkimi DRM. Do podłączenia DRM używany jest zacisk 6P.

Szpilka	Opis	Szpilka	Opis
1	DRM 0	4	DRM 7
2	DRM 5	5	DRM8
3	DRM 6	6	Com

Postępuj zgodnie z poniższym rysunkiem, aby zmontować złącze DRM.

Rysunek 4.24 Złącze DRM

5. Start i Stop

5.1 Uruchomienie falownika

Aby uruchomić falownik, należy ściśle przestrzegać poniższych kroków:

- 1. Najpierw włącz główny wyłącznik zasilania sieciowego (AC).
- 2. Włącz przełącznik DC. Jeśli napięcie paneli fotowoltaicznych jest wyższe niż napięcie rozruchowe, falownik włączy się. Zaświeci się wskaźnik stanu LED.
- 3. Gdy zarówno strona DC, jak i AC zasilają falownik, będzie on gotowy do generowania mocy. Początkowo falownik sprawdzi zarówno swoje parametry wewnętrzne, jak i parametry sieci AC, aby upewnić się, że mieszczą się one w dopuszczalnych granicach. W tym samym czasie zielona dioda LED zacznie migać, a na wyświetlaczu LCD pojawi się informacja INICJALIZACJA.
- Po 60-300 sekundach (w zależności od lokalnych wymagań) falownik zacznie generować energię. Zielona dioda LED będzie świecić światłem ciągłym, a na wyświetlaczu LCD pojawi się komunikat GENEROWANIE.

OSTRZEŻENIE: Nie należy dotykać powierzchni podczas pracy falownika. Może ona być gorąca i powodować oparzenia.

5.2 Zatrzymanie falownika

Aby zatrzymać falownik, należy ściśle przestrzegać poniższych kroków:

1. Wyłącz główny wyłącznik zasilania (AC).

2. Odczekać 30 sekund. Wyłącz przełącznik DC. Wszystkie diody LED falownika zgasną w ciągu jednej minuty.

6. Menu obsługi wyświetlacza LCD

6.1 Inicjalizacja

Interfejs	Wyjaśnienie
Inicjalizacja Proszę czekać!	Po uruchomieniu falownika wyświetlacz LCD najpierw wejdzie do tego interfejsu i dostarczy parametry wymagane przez działanie maszyny do DSP.

6.2 Menu głównych cykli

Po inicjalizacji wyświetlacz LCD przejdzie do menu głównego cyklu, aby wyświetlić informacje o pracy falownika w trybie cyrkulacji, w tym 10 interfejsów napięcia sieciowego, częstotliwości sieci elektrycznej itp. Czas automatycznego przełączania między interfejsami wynosi 3 sekundy, interfejsy można również przełączać ręcznie, naciskając przyciski UP lub DOWN, jeśli chcesz naprawić określony interfejs, naciśnij ENTER, aby zablokować ten interfejs, po pomyślnym zablokowaniu w prawym górnym rogu tego interfejsu pojawi się ikona blokady, naciśnij ponownie przycisk ENTER, ten interfejs zostanie odblokowany, a menu będzie nadal wyświetlane w trybie obiegowym.

Rysunek 1: Interfejs wyświetlacza recyklingu

Gdy menu znajduje się w trybie automatycznego wyświetlania cyklicznego, jeśli wystąpi błąd (usterka) lub alarm ostrzegawczy, natychmiast przejdzie do interfejsu systemowego i zablokuje go, co ułatwi użytkownikowi określenie przyczyny na

podstawie kodów na interfejsie. Po zniknięciu błędu (usterki) lub alarmu ostrzegawczego menu powróci do trybu automatycznej cyrkulacji. Naciśnij przycisk ESC, aby opuścić główny interfejs menu obiegu i przejść do interfejsu użytkownika (patrz 7.3).

6.3 Interfejs użytkownika

Interfejs

Wyjaśnienie

→1:Ustawienie
 2:Zapytanie
 3:Statystyki

Wybierz odpowiednie opcje, naciskając przycisk UP lub DOWN, wejdź do menu "setting", "inquiry" i "statistics", naciskając przycisk ENTER. Naciśnij ESC, aby powrócić do menu głównego.

6.4 Ustawienie

Interfejs

Wyjaśnienie

---HASŁO---Wejście: XXXXX Po wejściu do interfejsu konfiguracji system wyświetli monit o wprowadzenie hasła, domyślne hasło to "0000", które można zmienić w menu ustawień hasła (patrz 6.4.12); naciśnij przycisk UP/DOWN, aby zwiększyć lub zmniejszyć wprowadzaną wartość, naciśnij przycisk ENTER, aby przesunąć kursor do tyłu, naciśnij przycisk ESC, aby przesunąć kursor do przodu.

SETUP
→1: TRYB WEJŚCIA
2: GRID STD
3. REMOTE CTRI

Po pomyślnym wprowadzeniu hasła zostanie wyświetlony interfejs opcji ustawień. Naciśnij UP/DOWN, aby przesunąć odpowiednie opcje i wejdź do wybranego menu, naciskając przycisk ENTER; naciśnij przycisk ESC, aby powrócić do interfejsu użytkownika (patrz 6.3), w sumie dostępnych jest 15 opcji, w tym tryb wprowadzania, grid std, remote ctrl, run setting, 485 address, baud rate, protocol, language, backlight, date/time, clear rec, password,

Naciśnij przycisk W GÓRĘ / W DÓŁ, aby przesunąć

odpowiednie opcje, w tym Chiny, Niemcy, Australia,

Hiszpania, Wielka Brytania; łącznie 16 rodzajów.

Następnie potwierdź wybraną opcję i przejdź do

interfejsu ponownego uruchomienia (patrz 6.4.4.11),

naciskając przycisk ENTER. Naciśnij przycisk ESC, aby

6.4.1 Tryb wejścia

Interfejs	Wyjaśnienie
TRYB WEJŚCIA - →1:NIEZALEŻNY	Naciśnij przycisk W GÓRĘ / W DÓŁ, aby przesunąć odpowiednie opcje, naciśnij ENTER, aby przejść do interfejsu roboczego (patrz 6.4.4); powróć do interfejsu roboczego (patrz 6.4.4), naciskając ESC, w sumie są 2 opcje, w tym włączanie i wyłączanie.
	Ustawienie progu przepiecia, 242 ~ 270V.

Wyjaśnienie

Włochy,

6.4.2 Standard dla sieci elektrycznej

Interfejs

----GRID STD----→1:Chiny 2:Niemcy 3:Australia 4:Włochy 5:Hiszpania 6:U.K.

6.4.3 Zdalny CTRL

Interfejs

Wyjaśnienie

REMOTE CTRL
-
→1:DISABLE

Naciśnij przycisk UP/DOWN, aby przesunąć odpowiednie opcje. Następnie potwierdź wybraną opcję i wróć do interfejsu konfiguracji (patrz 6.4), naciskając przycisk ENTER. Naciśnij ESC, aby anulować wybór i powrócić do interfejsu ustawień (patrz 6.4). Opcją domyślną jest

6.4.4 Parametry robocze

Interfejs	Wyjaśnienie
URUCHOMIENIE USTAWIEŃ → 1: VPV-START 2: OPÓŹNIONY	Naciśnij przycisk UP/DOWN, aby przesunąć odpowiednie opcje, naciśnij ENTER, aby wejść do wybranego menu; powróć do interfejsu ustawień (patrz 6.4), naciskając ESC, w sumie dostępnych jest 6 opcji, w tym VPV-START, DELAY-START, VAC-MIN, VAC-MAX, FAC-MIN, FAC-MAX, ACTIVE POWER, REACT POWER, FREQ POWER i V LOAD.

6.4.4.1 Napięcie rozruchowe

6.4.4.2 Czas opóźnienia rozruchu

Interfejs

Wyjaśnienie

roboczego (patrz 6.4.4); liczba wprowadzanych danych

-OPÓŹNIENIE ROZRUCHU-WEJŚCIE: 60

Naciśnij UP/DOWN, aby zwiększyć lub zmniejszyć wartość wejściową, potwierdź wprowadzenie i przejdź do interfejsu ponownego uruchomienia (patrz 6.4.4.11), naciskając przycisk ENTER; naciśnij ESC, aby anulować wprowadzanie i powrócić do interfejsu roboczego (patrz 6.4.4), wartość wejściowa wynosi od ------

6.4.4.3 Niskie napięcie sieci elektrycznej

Interfejs	Wyjaśnienie	
	Naciśnij UP/DOWN, aby zwiększyć lub zmniejszyć wartość wejściową, potwierdź wprowadzenie i przejdź	
NISKIE NAPIĘCIE	do interfejsu ponownego uruchomienia (patrz	
SIECIOWE	6.4.4.11), naciskając przycisk ENTER; naciśnij ESC, aby	
WEJŚCIE: 450	anulować wprowadzanie i powrócić do interfejsu	
	roboczego (patrz 6.4.4), wartość wejściowa wynosi od	
150 do 190. Ten parametriest zmieniany przez 6.4.4.4 Wysokie napiecie sieci elektrycznej		

ı٢

Interfejs	Wyjaśnienie
	Naciśnij UP/DOWN, aby zwiększyć lub zmniejszyć wartość wejściową, potwierdź wprowadzenie i przejdź
WYSOKIE NAPIĘCIE SIECIOWE INPUT: 550 I INIT· V	do interfejsu ponownego uruchomienia (patrz 6.4.4.11), naciskając przycisk ENTER; naciśnij ESC, aby anulować wprowadzanie i powrócić do interfejsu roboczego (patrz 6.4.4), wartość wejściowa wynosi od
	510 do 550. Ten parametr jest zmieniany przez

6.4.4.5 Niska częstotliwość sieci elektrycznej

Interfejs

Wyjaśnienie

-- NISKA CZĘSTOTLIWOŚĆ SIATKI WEIŚCIE:49 5

Naciśnij UP/DOWN, aby zwiększyć lub zmniejszyć wartość wejściową, potwierdź wprowadzenie i wejdź do interfejsu ponownego uruchomienia (patrz 6.4.4.11), naciskając przycisk ENTER; naciśnij ESC, aby anulować wprowadzanie i powrócić do interfejsu roboczego (patrz 6.4.4), wartość wejściowa wynosi od

6.4.4.6 Wysoka częstotliwość sieci elektrycznej

Interfejs

Wyjaśnienie

Naciśnij UP/DOWN, aby zwiększyć lub zmniejszyć wartość wejściową, potwierdź wprowadzenie i przejdź do interfejsu ponownego uruchomienia (patrz 6.4.4.11), naciskając przycisk ENTER; naciśnij ESC, aby anulować wprowadzanie i powrócić do interfejsu roboczego (patrz 6.4.4), wartość wejściowa wynosi od

6.4.4.7 Moc czynna

InterfejsWyjaśnienie-- MOC CZYNNA
→ 1:PERCENT SET
2:VALUE SETNaciśnij UP/DOWN, aby przesunąć odpowiednie
opcje i wejdź do wybranego menu, naciskając
przycisk ENTER; naciśnij przycisk ESC, aby
powrócić do interfejsu roboczego (patrz 6.4.4).

6.4.4.7.1 Limit mocy

Interfejs

Wyjaśnienie

----POWER LIMIT---

Naciśnij UP/DOWN, aby zwiększyć lub zmniejszyć wartość wejściową, potwierdź wejście i wejdź do interfejsu mocy czynnej (patrz 6.4.4.7), naciskając przycisk ENTER; naciśnij ESC, aby anulować wejście i powrócić do mocy czynnej (patrz 6.4.4.7), wartość wejściowa wynosi od 0 do 100, 100% odpowiada 1,1-krotności mocy znamionowej.

6.4.4.7.2 Wartość mocy

Interfejs

Wyjaśnienie

Naciśnij UP/DOWN, aby zwiększyć lub zmniejszyć wartość wejściową, potwierdź wprowadzenie i wejdź do interfejsu Active power (patrz 6.4.4.7), naciskając przycisk ENTER; naciśnij ESC, aby anulować wprowadzanie i powrócić do Active power (patrz 6.4.4.7), wartość wejściowa wynosi od

6.4.4.8 Moc bierna

Interfejs

-- ZESTAW DO PONOWNEGO ZASILANIA →1:RE-POWER CTL

Wyjaśnienie

Naciśnij UP/DOWN, aby przesunąć odpowiednie opcje i wejdź do wybranego menu, naciskając przycisk ENTER; naciśnij przycisk ESC, aby powrócić do interfejsu roboczego (patrz 6.4.4).

6.4.4.8.1 PONOWNE WŁĄCZENIE ZASILANIA CTL

Interfejs

Wyjaśnienie

RE-POWER CTL
→1: WSPÓŁCZYNNIK
MOCY
2:REACT POWER

Naciśnij UP/DOWN, aby przesunąć odpowiednie opcje i wejdź do wybranego menu, naciskając przycisk ENTER; naciśnij przycisk ESC, aby powrócić do interfejsu roboczego (patrz 6.4.4).

6.4.4.8.2 Współczynnik mocy

Interfejs	Wyjaśnienie
WSPÓŁCZYNNIK MOCY	Naciśnij przycisk UP/DOWN, aby zwiększyć lub zmniejszyć wprowadzaną wartość, potwierdź wprowadzanie i wróć do opcji Moc bierna (patrz 6.4.4.8), naciskając przycisk ENTER, naciśnij przycisk ESC, aby anulować wprowadzanie i wrócić do opcji Moc bierna (patrz 6.4.4.8);
	······································

6.4.4.8.3 Moc bierna

Interfejs	Wyjaśnienie
	Naciśnij UP/DOWN, aby zwiększyć lub zmniejszyć wartość wejściową, potwierdź wprowadzenie i
-MOC BIERNA- INPUT: -26%	wróć do Reactive power (patrz 6.4.4.8), naciskając przycisk ENTER, naciśnij przycisk ESC, aby anulować wprowadzenie i wrócić do Reactive
	power (patrz 6.4.4.8); wprowadzona wartość liczbowa mieści się w zakresie od -60 do +60

6.4.4.9 Obniżenie wartości znamionowych dla nadmiernej częstotliwości

Interfejs

Wyjaśnienie

FREQ POWER
-
→1.FUNC ENB

Naciśnij przycisk UP/DOWN, aby przesunąć odpowiednie opcje, naciśnij ENTER, aby wejść do wybranego menu; powróć do interfejsu roboczego (patrz 6.4.4), naciskając ESC, w sumie dostępne są 2 opcje, w tym włączenie funkcji i

6.4.4.9.1 Włączenie obniżania wartości znamionowych przy przekroczeniu częstotliwości

Interfejs		Wyjaśnienie
FR 	EQ POWER →1.ENABLE 2.DISABLE	Naciśnij przycisk W GÓRĘ / W DÓŁ, aby przesunąć odpowiednie opcje, naciśnij ENTER, aby przejść do interfejsu obniżania wartości znamionowych częstotliwości (patrz 6.4.4.9); powróć do interfejsu obniżania wartości znamionowych częstotliwości (patrz 6.4.4.9),

6.4.4.9.2 Próg częstotliwości

Interfejs

----THRESHOLD-----INPUT: 65.0 JEDNOSTKA: Hz

Wyjaśnienie

Naciśnij UP/DOWN, aby zwiększyć lub zmniejszyć wprowadzaną wartość, potwierdź wprowadzanie i wejdź do interfejsu Over frequency derating interface (patrz 6.4.4.9), naciskając przycisk ENTER; naciśnij ESC, aby anulować wprowadzanie i powrócić do interfejsu Over frequency derating interface (patrz 6.4.4.9). wprowadzana wartość

6.4.4.10 Przekroczenie wartości znamionowej napięcia

Interfejs	Wyjaśnienie
V LOAD →1.ENABLE 2.DISABLE	Naciśnij przycisk W GÓRĘ / W DÓŁ, aby przesunąć odpowiednie opcje, naciśnij ENTER, aby przejść do interfejsu roboczego (patrz 6.4.4); powróć do interfejsu roboczego (patrz 6.4.4), naciskając ESC, w sumie są 2 opcje, w tym włączanie i wyłączanie.
	Ustawienie progu przepięcia, 242 ~ 270V.

6.4.4.11 Uruchom ponownie

Interfejs	Wyjaśnienie
Prosimy o ponowne	Zostanie wyświetlony komunikat informujący o konieczności ponownego uruchomienia urządzenia, aby ustawienia dotyczące pracy były skuteczne, a w ciągu 2 sekund nastąpi powrót do interfejsu roboczego (patrz 6 4 4)

6.4.5 ADRES 485

Interfejs	Wyjaśnienie
485 ADRES INPUT: 1	Naciśnij UP/DOWN, aby zwiększyć lub zmniejszyć wprowadzaną wartość, potwierdź wprowadzanie i powróć do interfejsu ustawień (patrz 6.4), naciskając
	wprowadzanie i powrócić do interfejsu ustawień (patrz

6.4.6 Szybkość transmisji 485

Interfejs

Wyjaśnienie

-----SELECT-----→1:2400 bps 2:4800 bps 3:9600 bps Naciśnij przycisk UP/DOWN, aby przesunąć odpowiednie opcje. Potwierdź wybraną opcję i powróć do interfejsu ustawień, naciskając przycisk ENTER (patrz 6.4), naciśnij przycisk ESC, aby anulować wybór i powrócić do interfejsu ustawień (patrz 6.4); opcje obejmują 2400, 4800, 9600 i 19200, w sumie 4, domyślnie 9600.

6 .4.7 485 protokół

Interfejs	Wyjaśnienie
SELECT →1: MODBUS 2: SOLAR RTU	Naciśnij przycisk UP/DOWN, aby przesunąć odpowiednie opcje. Potwierdź wybraną opcję i powróć do interfejsu ustawień, naciskając przycisk ENTER (patrz 6.4), naciśnij przycisk ESC, aby anulować
	wybór i powrócić do interfejsu ustawień (patrz 6.4);

6.4.8 Język wyświetlacza

Interfejs	Wyjaśnienie
	Naciśnij przycisk UP/DOWN, aby przesunąć
Język wyświetlacza-	odpowiednie opcje. Potwierdź wybraną opcję i wejdź
	do interfejsu ustawień (patrz 6.4), naciskając przycisk
→1:中文	ENTER, naciśnij przycisk ESC, aby anulować wybór i
2: ENGLISH	powrócić do interfejsu ustawień (patrz 6.4).

6.4.9 Podświetlenie LCD

Interfejs

Wyjaśnienie

CZAS ŚWIATŁA -		
WEJŚCIE:	20	
JEDNOSTKA:	SEC	

Naciśnij UP/DOWN, aby zwiększyć lub zmniejszyć wprowadzaną wartość, potwierdź wprowadzanie i powróć do interfejsu ustawień (patrz 6.4), naciskając przycisk ENTER, naciśnij przycisk ESC, aby anulować wprowadzanie i powrócić do interfejsu ustawień (patrz 6.4); wprowadzana wartość liczbowa wynosi od 20 do

6.4.10 Data/godzina

Interfejs

Wyjaśnienie

DATE/TIME			
DATA:	2000-01-		
01			
CZAS: 0	2:43:03		

Naciśnij przycisk UP/DOWN, aby zwiększyć lub zmniejszyć wprowadzaną wartość; naciśnij przycisk ENTER, aby przesunąć kursor do tyłu, potwierdzić wprowadzenie i powrócić do interfejsu ustawień (patrz 6.4); i przesuń kursor do przodu i powróć do interfejsu ustawień (patrz 6.4), naciskając przycisk ESC.

6.4.11 Rozliczanie historii

--- DEL REC---

→1: ANULUJ

2: POTWIFRDŹ

Interfejs

Wyjaśnienie

 Wyczyść wszystkie rekordy w menu zapytania/rekordu (patrz). Naciśnij przycisk UP/DOWN, aby przesunąć odpowiednie opcje, a następnie potwierdź wybraną opcję i przejdź do interfejsu ustawień (patrz 6.4), naciskając przycisk ENTER; naciśnij przycisk ESC, aby anulować opcję i powrócić do interfejsu ustawień

6.4.12 Ustawienie hasła

Interfejs

Wyjaśnienie

----- HASŁO -----STARY: XXXXX NOWOŚĆ: XXXXX POTWIERDŹ: XXXXX Ten interfejs będzie używany do zmiany hasła podczas wchodzenia do interfejsu konfiguracji (patrz 6.4). Naciśnij przycisk UP/DOWN, aby zwiększyć lub zmniejszyć wprowadzaną wartość, naciśnij przycisk ENTER, aby przesunąć kursor do tyłu, potwierdzić wprowadzenie i powrócić do interfejsu ustawień (patrz 6.4); i przesuń kursor do

6.4.13 Konserwacja

Interfejs	Wyjaśnienie
PASSWORD	Interfejs ten będzie używany do testów fabrycznych i
INPUT: XXXXX	będzie chroniony hasłem.

6.4.14 Przywracanie ustawień fabrycznych

Interfejs	Wyjaśnienie
	Ten interfejs będzie używany do przywracania domyślnych parametrów falownika.
-RESET FABRYCZNY- →1: ANULUJ 2: POTWIERDŹ	Naciśnij przycisk UP/DOWN, aby przesunąć odpowiednie opcje, a następnie potwierdź wybraną opcję i przejdź do interfejsu ustawień (patrz 6.4), naciskając przycisk ENTER; naciśnij przycisk ESC, aby
	anulować opcję i powrócić do interfejsu ustawień

6.4.15 Wykrywanie tablic

Interfejs	Wyjaśnienie
	Naciśnij przycisk UP/DOWN, aby przesunąć
- WYKRYWANIE TABLICY - →1:DETECT ENB 2:THRESHOLD	odpowiednie opcje, a następnie potwierdź wybraną opcję i przejdź do interfejsu ustawień (patrz 6.4), naciskając przycisk ENTER; naciśnij przycisk ESC, aby anulować opcję i powrócić do interfejsu ustawień

6.4.15.1 ARRAY

Podręcznik użytkownika

Interfejs

	•	/	•	•
1/1	112	cr	םוו	nia
v v v	/10		пс	i iie
,	J -			

Naciśnij przycisk UP/DOWN, aby przesunąć odpowiednie opcje. Potwierdź wybraną opcję i powróć do wykrywania macierzy, naciskając przycisk ENTER (patrz 6.4.15), naciśnij przycisk ESC, aby anulować wybór i powrócić do wykrywania

Interfejs

Wyjaśnienie

--THRESHOLD--WEJŚCIE:8A

--ARRAY--

1:ENABLE

→2:DISABLE

Naciśnij UP/DOWN, aby zwiększyć lub zmniejszyć wprowadzaną wartość, potwierdź wprowadzanie i powróć do wykrywania tablicy (patrz 6.4.15), naciskając przycisk ENTER, naciśnij przycisk ESC, aby anulować wprowadzanie i powrócić do wykrywania tablicy (patrz 6.4.15); wprowadzana

6.4.16 System trójfazowy

Interfejs

-System trójfazowy-1:3W+N+PE →2:3W+PE

Wyjaśnienie

Zgodnie z rzeczywistym trybem okablowania: Naciśnij przycisk UP/DOWN, aby przesunąć odpowiednie opcje, a następnie potwierdź wybraną opcję i przejdź do interfejsu ustawień (patrz 6.4), naciskając przycisk ENTER; naciśnij przycisk ESC, aby anulować opcję i powrócić do interfejsu ustawień (patrz 6.4).

6.5 Zapytanie

Interfejs

Wyjaśnienie

INQUIRE
→1: INV MODEL
2: MODEL NR
3: FIRMWARE
4: REKORD

6.5.1 MODEL INV

Naciśnij przycisk UP/DOWN, aby przejść do odpowiedniej opcji, wejdź do wybranego menu, naciskając przycisk ENTER; i wróć do interfejsu użytkownika (patrz 6.3), naciskając przycisk ESC, w sumie dostępnych jest 5 opcji, w tym INV MODEL, MODEL NO, FIRMWARE, RECORD i ERROR EVENT.

Interfejs

Wyjaśnienie

----INVERTER-----XXXXX

----INVERTER----

Ten interfejs wyświetla model produktu falownika. Przycisk UP/DOWN jest nieprawidłowy, przycisk ENTER jest nieprawidłowy; naciśnij przycisk ESC, aby powrócić do interfejsu zapytania (patrz 6.5).

6.5.2 MODEL SN

Interfejs

SN:

Wyjaśnienie

Ten interfejs wyświetla numer serii produktu falownika. Przycisk UP/DOWN jest nieprawidłowy, przycisk ENTER jest nieprawidłowy; naciśnij przycisk ESC, aby powrócić do interfejsu zapytania (patrz 6.5).

6.5.3 Oprogramowanie sprzętowe

Interfejs	Wyjaśnienie
FIRMWARE	Ten interfejs wyświetla numer edycji oprogramowania
ARM VER:	układowego, takiego jak ARM i DSP w falowniku.
I-DSP VER:	Przycisk UP/DOWN jest nieprawidłowy, przycisk
B-DSP VER:	ENTER jest nieprawidłowy; naciśnij przycisk ESC, aby

6.5.4 REKORD

Interfejs

----REC(35)----1:F01-1 DATA: 2011-10-21 CZAS: 16:35:26

DETAIL	
Napiecie sieci	

Wartość
285V

Wyjaśnienie

Interfejs ten wyświetla zapis i czas jego wystąpienia, w tym dwa rodzaje błędów i alarmów ostrzegawczych, jego zawartość zostanie opisana w kodach, z całkowitą liczbą 500 na maksimum, po przekroczeniu tego zakresu, ten z najwcześniejszym czasem zostanie objęty. Naciśnij przycisk UP/DOWN, aby przejrzeć zapis do tyłu lub do przodu, a następnie naciśnij ENTER, aby przejść do interfejsu objaśnień dla odpowiedniej zawartości zapisu, jak pokazano na

Ten interfejs będzie używany do przywracania domyślnych parametrów falownika.

Naciśnij przycisk UP/DOWN, aby przesunąć odpowiednie opcje, a następnie potwierdź wybraną opcję i przejdź do interfejsu ustawień (patrz 6.4), naciskając przycisk ENTER; naciśnij przycisk ESC, aby anulować opcję i powrócić do interfejsu ustawień (patrz 6.4).

Interfejs ten służy do wyświetlania odpowiedniej konkretnej wartości liczbowej podczas generowania kodu. Na przykład, generowanie kodu błędu dla wysokiej wartości napięcia zasilania komercyjnego, a my możemy odnieść się do wartości napięcia kota, że w tym interfejsie. Niektóre kody nie odpowiadają żadnym wartościom liczbowym, a następnie te interfejsy są puste. Przycisk UP/DOWN jest nieprawidłowy, a ENTER jest również nieprawidłowy;

6.5.5 ZDARZENIE BŁĘDU

Interfejs

Wyjaśnienie

EVE(20)		
1:F01-1		
Data: 2011-10-21		
Czas: 16:35:26		

- --EVE(1)--. +BUS: 350,0 V -BUS: 350.0V PROMIENNIK: 50 °C
- --EVE(1)--. RS: 0,00 Hz ST: 0.00Hz TR: 0.00Hz
 - --EVE(1)--. RS: 0,00 V ST: 0,00 V TR: 0,00 V

Naciśnij przycisk UP/DOWN, aby przejrzeć nagranie do tyłu lub do przodu, a następnie naciśnij ENTER, aby przejść do interfejsu objaśnień dla odpowiedniej zawartości nagrania, jak pokazano na poniższym rysunku. Naciśnij ESC, aby powrócić do interfejsu zapytania (patrz 6.5).

Naciśnij przycisk UP/DOWN, aby przejrzeć nagranie do tyłu lub do przodu, naciśnij przycisk ESC, aby powrócić do ostatniego interfejsu.

Naciśnij przycisk UP/DOWN, aby przejrzeć nagranie do tyłu lub do przodu, naciśnij przycisk ESC, aby powrócić do ostatniego interfejsu.

Naciśnij przycisk UP/DOWN, aby przejrzeć nagranie do tyłu lub do przodu, naciśnij przycisk ESC, aby powrócić do ostatniego interfejsu.

6.6 Statystyki

Interfejs

→1:TIME STAT.2:CONNE.TIMES3:PEAK POWER

Wyjaśnienie

Ten interfejs służy do wyboru różnych opcji statystyk. Przycisk UP/DOWN służy do przesuwania odpowiednich opcji, naciśnij przycisk ENTER, aby wejść do wybranego menu; i naciśnij ESC, aby powrócić do interfejsu użytkownika (patrz 6.3), istnieje 8 opcji, w tym czas, numer sieci, suma, ten dzień, ten tydzień, ten miesiąc, ten rok, szczyt mocy.

6.6.1 Statystyki czasowe

Podręcznik użytkownika

Interfejs

TIME		
RUN:	86	
GRID: 56		
JEDNOSTKA:		

Wyjaśnienie

Ten interfejs wyświetla czas pracy i czas generowania falownika. Przycisk UP/DOWN jest nieprawidłowy, a ENTER jest również nieprawidłowy; naciśnij przycisk ESC, aby powrócić do interfejsu statystyk (patrz 6.6).

6.6.2 Czasy pracy równoległej w

Interfejs	Wyjaśnienie
CONNE.TIMES-	Ten interfejs wyświetla czasy pracy równoległej falownika. Przycisk UP/DOWN jest nieprawidłowy, a
CZASY: 45	ENTER jest również nieprawidłowy; naciśnij przycisk ESC, aby powrócić do interfejsu statystyk (patrz 6.6).

6.6.3 Szczyt mocy

Interfejs

Wyjaśnienie

	W tym interfeisie wyświetlany iest historyczny i	
MOC	dzisiejszy szczyt mocy falownika. Przycisk UP/DOWN	
SZCZYTOWA	jest nieprawidłowy, a ENTER jest również	
HISTORIA: 10645	nieprawidłowy; naciśnij przycisk ESC, aby powrócić do	
DZIŚ: 9600	interfejsu statystyk (patrz 6.6).	

6.6.4 Wygenerowana energia tego dnia

Interfejs

----E-TODAY ----

LICZBA: 100

JEDNOSTKA:

Wyjaśnienie

Interfejs ten wyświetla wygenerowaną energię w danym dniu.

Odświeżanie po godzinie 24, czas falownika powinien być ustawiony w różnych strefach czasowych. Przycisk UP/DOWN jest nieprawidłowy, a ENTER jest również nieprawidłowy; naciśnij przycisk ESC, aby

6.6.5 Wytworzona energia w danym tygodniu

Interfejs

Wyjaśnienie

E-WEEK	
NUM: 700	
UNIT:	

Ten interfejs wyświetla wygenerowaną energię w danym tygodniu. Przycisk UP/DOWN jest nieprawidłowy, a ENTER jest również nieprawidłowy; naciśnij przycisk ESC, aby powrócić do interfejsu

6.6.6 Energia wytworzona w danym miesiącu

Interfejs

Wyjaśnienie

E-MONTH			
NUM: 3000			
UNIT:			

Ten interfejs wyświetla wygenerowaną energię w danym miesiącu. Przycisk UP/DOWN jest nieprawidłowy, a ENTER jest również nieprawidłowy; naciśnij przycisk ESC, aby powrócić do interfejsu statystyk (patrz 6.6).

6.6.7 Wytworzona energia w danym roku

	~	
nte	rte	15
inte		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

Ν

Wyjaśnienie

	Tan interfeis un émietle un generou energie u
	len interiejs wyswietia wygenerowaną energię w
E-YEAR	danym roku. Przycisk UP/DOWN jest nieprawidłowy, a
NUM: 30000	ENTER jest również nieprawidłowy; naciśnij przycisk
UNIT:	ESC, aby powrócić do interfejsu statystyk (patrz 6.6).

6.6.8 Wytwarzanie brutto

Interfejs

-----E-TOTAL-----NUM: 100000 JEDNOSTKA: KWH

Wyjaśnienie

Ten interfejs wyświetla generację brutto falownika. Przycisk UP/DOWN jest nieprawidłowy, a ENTER jest również nieprawidłowy; naciśnij przycisk ESC, aby powrócić do interfejsu statystyk (patrz 6.6).

7. Konserwacja

Falownik nie wymaga regularnej konserwacji. Jednak czyszczenie radiatora z kurzu pomoże falownikowi w odprowadzaniu ciepła i wydłuży jego żywotność. Kurz można usunąć miękką szczotką.

UWAGA:

Nie należy dotykać powierzchni falownika podczas jego pracy. Niektóre części falownika mogą być gorące i spowodować oparzenia. Przed przystąpieniem do konserwacji lub czyszczenia należy wyłączyć falownik (patrz sekcja 5.2) i odczekać, aż ostygnie.

Wyświetlacz LCD i wskaźniki stanu LED można czyścić wilgotną ściereczką, jeśli są zbyt brudne, aby można je było odczytać.

UWAGA:

Do czyszczenia falownika nie wolno używać rozpuszczalników, materiałów ściernych ani żrących.

8. Rozwiązywanie problemów

Konserwacja falownika jest bardzo łatwa. W przypadku napotkania jakichkolwiek problemów, należy najpierw zapoznać się z poniższymi sposobami rozwiązywania problemów, a jeśli problemu nie można rozwiązać samodzielnie, należy skontaktować się z lokalnym dystrybutorem.

Poniższy arkusz zawiera listę podstawowych pytań, które mogą pojawić się podczas operacji.

Komunikat alarmowy	Opis awarii	Rozwiązanie
F00-F03	Napięcie i częstotliwość prądu przemiennego są zbyt wysokie lub zbyt niskie.	 należy sprawdzić napięcie sieciowe, czy jest to zgodne z lokalnymi normami bezpieczeństwa sprawdź, czy linia wyjściowa AC jest prawidłowo podłączona podłączony. Upewnij się, że napięcie wyjściowe jest w normie. Odłącz wejście PV i uruchom ponownie falownik i sprawdzić, czy Jeśli sieć zasilająca działa normalnie, usterka jest nadal zgłaszana. Należy skontaktować się ze sprzedawcą.
F04-F05	Napięcie magistrali jest zbyt wysoki lub zbyt niski.	 sprawdź ustawienie trybu wejścia Odłącz wejście PV, uruchom ponownie falownik i sprawdź, czy usterka nadal występuje, skontaktuj się ze sprzedawcą.
F06	Napięcie magistrali wynosi Brak równowagi	 Sprawdź ustawienie trybu wejścia. Odłącz wejście PV, uruchom ponownie falownik i sprawdź, czy usterka nadal występuje. Po ponownym uruchomieniu błąd nadal występuje. Proszę skontaktować się z dealerem

		1. Odłącz wejście PV, uruchom ponownie falownik i sprawdź, czy usterka nadal
		występuje.
E07	Izolacja	2. Zmierz impedancję PV+/PV- do
FU7	impedancja Usterka	uziemienia, czy jest większa niż 50KΩ.
		3. Izolacja serii jest normalna, ale usterka
		nadal występuje. Skontaktuj się ze
		sprzedawcą.
		1. Sprawdź ustawienie trybu wejścia.
F08	Prąd wejściowy	2. Odłącz wejście PV, uruchom ponownie
100	wysoki	falownik i sprawdź, czy usterka nadal
		występuje.
	Wysoki prąd	1. Odłącz wejście PV i ponownie uruchom
F09	sprzetowy	falownik po kilku minutach i sprawdź, czy
	59126003	usterka nadal występuje.
	Wysoki prąd	1. Odłącz wejście PV i ponownie uruchom
F10	falownika	falownik po kilku minutach i sprawdź, czy
		usterka nadal występuje.
	Falownik DC	1. Odłącz wejście PV i ponownie uruchom
F11	Obecny wysoki	falownik po kilku minutach i sprawdź, czy
	poziom	usterka nadal występuje.
		1. Odłącz wejście PV i ochłodź falownik, a
		następnie uruchom go ponownie, aby
	Temperatura	sprawdzić, czy powrócił do normalnej
F12		pracy.
	otoczenia powyzej	2. Należy sprawdzić, czy temperatura
		otoczenia nie przekracza temperatury
		roboczej.
		1. Odłącz wejście PV i ochłodź falownik, a
F13	Temperatura	następnie uruchom go ponownie, aby
	radiatora	sprawdzić, czy powrócił do normalnej
	Wysoki	pracy.
		2. sprawdź temperaturę otoczenia
		czy poza temperaturą roboczą.
F14	Usterka przekaźnika	1. Odłącz wejście PV, uruchom ponownie

	AC	falownik i sprawdź, czy usterka nadal
		występuje.
		2. Sprawdź, czy w przewodzie fazowym
		nie brakuje fazy, takiej jak R, S, T.
		1. Sprawdź konfigurację wejścia PV, jedno
		z wejść PV jest nieaktywne, gdy falownik
F15	Niskie napięcie	jest ustawiony w trybie równoległym.
115	wejściowe PV	2. Odłącz wejście PV, uruchom ponownie
		falownik i sprawdź, czy usterka nadal
		występuje.
		1. falownik znajduje się w stanie zdalnego
		wyłączenia (OFF).
F16	Zdalne wyłączenie	Inwerter można wyłączyć/włączyć zdalnie
		za pomocą oprogramowania
		monitorującego.
		1. odłączyć wejście PV i ponownie
F18		uruchomić falownik
	Usterka	i sprawdzić, czy błąd nadal występuje.
		1. odłączyć wejście PV i ponownie
		uruchomić falownik
F20	Wysoki prąd upływu	i sprawdzić, czy błąd nadal występuje.
		2. Sprawdź, czy kabel AC i linia wejściowa
		PV mają nieprawidłową izolację.
		1. odłącz wejście PV, uruchom ponownie
		falownik i sprawdź, czy usterka nadal
	Prąd upływu Self-	występuje.
FZI	Sprawdzanie awarii	2.Skontaktuj się z lokalnym
		dystrybutorem, jeśli usterka
		nadal istnieje.
		1. odłącz wejście PV, uruchom ponownie
F22	Napiocio cnóinoéci	falownik i sprawdź, czy usterka nadal
		występuje.
	Usterka	2. Jeśli usterka nadal występuje, należy
		skontaktować się z lokalnym

		dystrybutorem.
F23	Spójność Usterka częstotliwości	 odłączyć wejście PV i ponownie uruchomić falownik i sprawdzić, czy błąd nadal występuje. 2.Skontaktuj się z lokalnym dystrybutorem, jeśli usterka nadal istnieje.
F24	Błąd działania DSP	 1.Odłącz wejście PV, uruchom ponownie falownik i sprawdź, czy usterka nadal występuje. 2.Skontaktuj się z lokalnym dystrybutorem, jeśli usterka nadal istnieje.
F26	Usterka IGBT	 1.Odłącz wejście PV, uruchom ponownie falownik i sprawdź, czy usterka nadal występuje. 2.Skontaktuj się z lokalnym dystrybutorem, jeśli usterka nadal istnieje.
F27	N napięcie linia- ziemia jest wysoki	 Sprawdź, czy uziemienie urządzenia jest podłączone do uziemienia sieci energetycznej. Sprawdź, czy napięcie linii n do uziemienia jest wyższe niż wartość zabezpieczenia.
F32	Komunikacja DSP Zagubiony	 1. odłączyć wejście PV i ponownie uruchomić falownik i sprawdzić, czy błąd nadal występuje. 2.Skontaktuj się z lokalnym dystrybutorem, jeśli usterka nadal istnieje.

Tabela 8.1 Rozwiązywanie problemów

UWAGA:

Jeśli falownik wyświetli jakikolwiek komunikat alarmowy wymieniony w Tabeli 8.1, należy wyłączyć falownik (patrz Sekcja 5.2, aby zatrzymać falownik) i odczekać 5 minut przed jego ponownym uruchomieniem (patrz Sekcja 5.1, aby uruchomić falownik). Jeśli awaria nie ustąpi, należy skontaktować się z lokalnym dystrybutorem lub centrum serwisowym. Przed skontaktowaniem się z nami należy przygotować następujące informacje.

- 1. Numer seryjny falownika;
- 2. Dystrybutor/dealer falownika (jeśli jest dostępny);
- 3. Data instalacji.

4. Opis problemu (tj. komunikat alarmowy wyświetlany na wyświetlaczu LCD i stan kontrolek LED stanu. Pomocne będą również inne odczyty uzyskane z podmenu Informacje.);

5. Konfiguracja macierzy fotowoltaicznej (np. liczba paneli, pojemność paneli, liczba łańcuchów itp;)

6. Dane kontaktowe.

9. Specyfikacje

Specyfikacja modelu	BluE-3KT-M1	BluE-3.6KT-M1	BluE-4KT-M1
Wejście (DC)			
Maks. Napięcie DC		1100V	
Maksymalny prąd wejściowy na tracker MPPT	15A		
Prąd zwarciowy PV		20A	
Napięcie początkowe		180V	
Zakres napięcia MPPT		140-1000V	
Zakres napięcia MPPT przy pełnym obciążeniu	160-850V	160-850V	160-850V
Napięcie nominalne		650V	
Liczba trackerów MPPT	2	2	2
Ciągi na tracker MPPT	1	1	1
Wyjście (AC)			
Normalna moc wyjściowa AC	3000W	3600W	4000W
Znamionowa moc pozorna	3300VA	3960VA	4400VA
Maks. Moc wyjściowa AC	3300W	3960VA	4400W
Normalne napięcie AC		400V/230V	
Normalna częstotliwość sieci AC	50Hz/60Hz		
Nominalny prąd wyjściowy	4.4A	5.2A	5.8A
Maks. prąd wyjściowy	4.8A	5.8A	6.4A

Podręcznik użytkownika

Specyfikacja modelu	BluE-3KT-M1	BluE-3.6KT-M1	BluE-4KT-M1
Współczynnik mocy (Φ)		-0.8~+0.8	
THDI		3%	
Wydajność			
Maks. Wydajność	98.4%	98.4%	98.4%
Euro Efficiency	97.5%	97.5%	97.5%
Specyfikacja ogólna			
Wymiary (szer. / dł. /	380*483*161m	380*483*161m	280*182*161mm
gł.)	m	m	360 465 10111111
Waga (KG)	16 kg	16 kg	16 kg
Zakres temperatur pracy	-25°C ~ +60°C		
Typ chłodzenia		Naturalne chłodze	enie
Maks. Wysokość działania	4000m (> 3000m obniżenie wartości znamionowych)		
Maks. Wilgotność podczas pracy	0~100%		
Klasa IP	IP66		
Тороlодіа	Beztransformatorowy		
Wyświetlacz i komunikac	ja		
Wyświetlacz		LCD/LED	
RS485	2		

Specyfikacja modelu	BluE-5KT-M1	BluE-6KT-M1	BluE-8KT-M1
Wejście (DC)			
Maks. Napięcie DC		1100V	
Maksymalny prąd			
wejściowy na tracker		15A	
MPPT			
Prąd zwarciowy PV		20A	

Podręcznik użytkownika

Specyfikacja modelu	BluE-5KT-M1	BluE-6KT-M1	BluE-8KT-M1
Napięcie początkowe	180V		
Zakres napięcia MPPT		140-1000V	
Zakres napięcia MPPT przy pełnym obciążeniu	240-850V	290-850V	380-850V
Napięcie nominalne		650V	
Liczba trackerów MPPT	2	2	2
Ciągi na tracker MPPT	1	1	1
Wyjście (AC)			
Normalna moc wyjściowa AC	5000W	6000W	8000W
Znamionowa moc pozorna	5500VA	6600VA	880VA
Maks. Moc wyjściowa AC	5500W	6600W	8800W
Normalne napięcie AC	400V/230V		
Normalna częstotliwość sieci AC		50Hz/60Hz	
Nominalny prąd wyjściowy	7.3A	8.7A	11.6A
Maks. prąd wyjściowy	8.0A	9.6A	12.8A
Współczynnik mocy (Φ)	-0.8~+0.8		
THDI	3%		
Wydajność	·		
Maks. Wydajność	98.4%	98.4%	98.6%

Specyfikacja modelu	BluE-5KT-M1	BluE-6KT-M1	BluE-8KT-M1	
Euro Efficiency	97.5%	97.5%	98.0%	
Specyfikacja ogólna				
Wymiary (szer. / dł. /	380*483*161m	200*402*101	200*402*101	
gł.)	m	380"483"161mm	380*483*1611111	
Waga (KG)	16 kg	16 kg	16 kg	
Zakres temperatur		-25°C ~ +60°C		
pracy	-25 C~+60 C			
Typ chłodzenia	Naturalne chłodzenie			
Maks. Wysokość	4000m (> 3000m obniżenie wartości znamionowych)			
działania				
Maks. Wilgotność	0~100%			
podczas pracy	U~100%			
Klasa IP	IP66			
Тороlодіа	Beztransformatorowy			
Wyświetlacz i komunikacja				
Wyświetlacz	LCD/LED			
RS485	2			

Specyfikacja modelu	BluE-10KT-M1	BluE-12KT-M1	BluE-15KT-M1
Wejście (DC)			
Maks. Napięcie DC	1100V		
Maksymalny prąd			
wejściowy na tracker		15A	
MPPT			
Prąd zwarciowy PV	20A		
Napięcie	1201/		
początkowe		1804	
Zakres napięcia		140-1000	
MPPT		140-10000	

Specyfikacja modelu	BluE-10KT-M1	BluE-12KT-M1	BluE-15KT-M1
Zakres napięcia MPPT przy pełnym obciażeniu	420-850V	480-850V	420-850V
Napięcie nominalne		650V	I
Liczba trackerów MPPT	2	2	2
Ciągi na tracker MPPT	1	1	2/1
Wyjście (AC)		-	-
Normalna moc wyjściowa AC	10kW	12kW	15kW
Znamionowa moc pozorna	11kVA	13,2 kVA	16,5 kVA
Maks. Moc wyjściowa AC	11kW	13,2 kW	16,5 kW
Normalne napięcie AC	400V/230V		
Normalna częstotliwość sieci AC		50Hz/60Hz	
Nominalny prąd wyjściowy	14.5A	17.4A	21.7A
Maks. prąd wyjściowy	16A	19.2A	23.9A
Współczynnik mocy (Φ)		-0.8~+0.8	
THDI		3%	
Wydajność			
Maks. Wydajność	98.4%	98.4%	98.6%
Euro Efficiency	97.5%	97.5%	98.0%
Specyfikacja ogólna			
Wymiary (szer. / dł. / gł.)	380*483*161m m	380*483*161mm	380*483*193mm

Specyfikacja modelu	BluE-10KT-M1	BluE-12KT-M1	BluE-15KT-M1	
Waga (KG)	16 kg	16 kg	20,7 kg	
Zakres temperatur pracy		-25°C ~ +60°C		
Tun chladzania	Naturalne	Naturalne	Wentylator	
Typ chłodzenia	chłodzenie	chłodzenie	chłodzący	
Maks. Wysokość działania	4000m (> 3000m obniżenie wartości znamionowych)			
Maks. Wilgotność podczas pracy	0~100%			
Klasa IP	IP66			
Тороlодіа	Beztransformatorowy		vy	
Wyświetlacz i komunikacja				
Wyświetlacz	LCD/LED			
RS485	2			

Specyfikacja modelu	BluE-15KT-M3	BluE-17KT-M1	BluE-20KT-M1
Wejście (DC)			
Maks. Napięcie DC	1100V		
Maksymalny prąd			
wejściowy na tracker	15A	30A	30A
MPPT			
Prąd zwarciowy PV	20A	40A	40A
Napięcie		1901/	
początkowe		1804	
Zakres napięcia		140-1000	
MPPT	140-10000		
Zakres napięcia			
MPPT przy pełnym	580-850V	450-850V	420-850V
obciążeniu			

Specyfikacja modelu	BluE-15KT-M3	BluE-17KT-M1	BluE-20KT-M1
Napięcie nominalne	650V		
Liczba trackerów MPPT	2	2	2
Ciągi na tracker MPPT	1	2	2
Wyjście (AC)			
Normalna moc wyjściowa AC	15kW	17kW	20kW
Znamionowa moc pozorna	16,5 kVA	18,7 kVA	22kVA
Maks. Moc wyjściowa AC	16,5 kW	18,7 kW	22kW
Normalne napięcie AC		400V/230V	
Normalna częstotliwość sieci AC		50Hz/60Hz	
Nominalny prąd wyjściowy	21.7A	24.6A	29.0A
Maks. prąd wyjściowy	23.9A	27.1A	31.9A
Współczynnik mocy (Φ)		-0.8~+0.8	
THDI		3%	
Wydajność			
Maks. Wydajność	98.6%	98.6%	98.6%
Euro Efficiency	98.3%	98.3%	98.3%
Specyfikacja ogólna			
Wymiary (szer. / dł. / gł.)		380*483*193mm	
Waga (KG)	20,7 kg		
Zakres temperatur pracy	-25°C ~ +60°C		

Podręcznik użytkownika

Specyfikacja modelu	BluE-15KT-M3	BluE-17KT-M1	BluE-20KT-M1	
Typ chłodzenia	Wentylator chłodzący			
Maks. Wysokość działania	4000m (> 3000m obniżenie wartości znamionowych)			
Maks. Wilgotność podczas pracy	0~100%			
Klasa IP	IP66			
Тороlодіа	Beztransformatorowy			
Wyświetlacz i komunikacja				
Wyświetlacz	LCD/LED			
RS485	2			

Specyfikacja modelu	BluE-22KT-M3	BluE-23KT-M1	BluE-25KT-M1
Wejście (DC)			
Maks. Napięcie DC	1100V		
Maksymalny prąd			
wejściowy na tracker	30A		
MPPT			
Prąd zwarciowy PV	40A		
Napięcie	1901/		
początkowe	1000		
Zakres napięcia	140, 1000V		
MPPT	140-1000V		
Zakres napięcia			
MPPT przy pełnym	480-850V	480-850V	460-850V
obciążeniu			
Napięcie nominalne	650V		
Liczba trackerów	2		
МРРТ	۷		
Ciągi na tracker	2		

Specyfikacja modelu	BluE-22KT-M3 BluE-23KT-M1 BluE-25KT-M1		BluE-25KT-M1	
MPPT				
Wyjście (AC)				
Normalna moc	22kW	23kW	26kW	
wyjściowa AC				
Znamionowa moc pozorna	24,2 kVA	25,3 kVA	27,5 kVA	
Maks. Moc	242134	05.0.1.14	07 5 1 14	
wyjściowa AC	24,2 KVV	25,3 KW	27,5 KW	
Normalne napięcie	4001//2201/			
AC		400 17230 1		
Normalna				
częstotliwość sieci		50Hz/60Hz		
AC				
wyjściowy	31.9A	33.3A	36.2A	
Maks. prąd	25.14	26.74	20.04	
wyjściowy	35.TA	36.7A	39.9A	
Współczynnik mocy	-0.8~+0.8			
(Φ)	-0.0-+0.0			
THDI	3%			
Wydajność				
Maks. Wydajność	98.6%	98.6%	98.6%	
Euro Efficiency	98.3% 98.3% 98.3%		98.3%	
Specyfikacja ogólna				
Wymiary (szer. / dł. /	220*422*102mm			
gł.)	300 403 13311111			
Waga (KG)	20,7 kg			
Zakres temperatur	-25°C ~ +60°C			
pracy	-23 C ~ +00 C			
Typ chłodzenia	Wentylator chłodzący			
Maks. Wysokość	4000m (> 3000m obniżenie wartości znamionowych)			
działania				
Maks. Wilgotność	0~100%			

Podręcznik użytkownika

Specyfikacja modelu	BluE-22KT-M3	BluE-23KT-M1	BluE-25KT-M1
podczas pracy			
Klasa IP	IP66		
Тороlодіа	Beztransformatorowy		
Wyświetlacz i komunikacja			
Wyświetlacz	LCD/LED		
RS485	2		

Urządzenia	
zabezpieczające	
Przełącznik DC	Tak
Nadmierny prąd	Tak
wyjściowy	
Ochrona przed	Tak
wysiadaniem	
Zabezpieczenie	Tak
przed odwrotną	
polaryzacją DC	
Wykrywanie błędów	Tak
łańcuchów	
Ochrona	DC: Typ II / AC: Typ III / Typ II Opcjonalnie
przeciwprzepięciowa	
AC/DC	
Wykrywanie izolacji	Tak
Zabezpieczenie	Tak
przed zwarciem AC	
Urządzenia	Tak
zabezpieczające	
Przełącznik DC	Tak
Nadmierny prąd	Tak
wyjściowy	
Ochrona przed	Tak
wysiadaniem	

Urządzenia			
zabezpieczające			
Inne funkcje			
Antyrefluks	Wsparcie, trzeba wybrać tabelę dystrybucji		
Odzyskiwanie PID	Opcjonalnie		
Skan dożylny	Tak		
Zdalna aktualizacja	Tak		
uwierzytelnianie			
Przepisy	"EN/IEC 62109-1_2010 ; EN/IEC 62109-2_2011"		
bezpieczeństwa			
EMC	EN/IEC 61000-6-1/2/3/4; EN/IEC 61000-3-11/12		
wydajność	IEC 60068; IEC 60529; IEC 62116; IEC 61727		
Standardy sieciowe	NB32004-2018,EN50549-1,VDE-AR-N-4105-2018		
	VDE124,VDE126,CEI-021,C10/C11,G98/G99		

Specyfikacja	Zakres napięcia	Zakres częstotliwości	Czas	Czas
siatki	wyjściowego (Vac)	wyjściowej (Hz)	oczekiwania	odzyskiwania
Chiny	187 ~ 252	48 ~ 50.5	60	30
Niemcy	196 ~ 264	47.5 ~ 51.5	60	30
Australia	200 ~ 270	48 ~ 52	60	30
Włochy	184 ~ 276	49.7 ~ 50.3	60	30
Hiszpania	196 ~ 253	48 ~ 50.5	180	30
WIELKA	184~ 264	47 ~52	180	30
Węgry	198 ~ 253	49.8 ~ 50.2	300	30
Belgia	184 ~ 264	47.5 ~ 51.5	60	30
AUS-W	200 - 270	47.5 ~50.5	60	30
Grecja	184 ~ 264	49.5~ 50.5	180	30
Francja	184 ~ 264	47.5 ~ 50.4	60	30
Metro	200 ~ 240	49 ~ 51	60	30
Tajlandia	198 ~ 242	48 ~51	60	30
GB19964	184 ~ 276	48~52	60	30
Lokalny	184 ~ 276	45 ~ 55	60	30
60Hz	184 ~276	58 ~62	60	30

Tabela 9.1 Specyfikacja sieci (3W+N+PE)

Tabela 9.2 Specyfikacja sieci (3W+PE/LL)

Specyfikacja	Zakres napięcia	Zakres częstotliwości	Czas	Czas
siatki	wyjściowego (Vac)	wyjściowej (Hz)	oczekiwania	odzyskiwania
Chiny	340 ~ 480	48 ~ 50.5	60	30
Niemcy	340 ~ 460	47.5 ~ 51.5	60	30
Australia	340 ~ 480	48 ~ 52	60	30
Włochy	320 ~ 480	49.7 ~ 50.3	60	30
Hiszpania	340 ~ 440	48 ~ 50.5	180	30
WIELKA	320 ~ 460	47 ~ 52	180	30
Węgry	360 ~ 440	49.8 ~ 50.2	300	30
Belgia	320 ~ 460	47.5 ~ 51.5	60	30
AUS-W	340 ~ 480	47.5 ~ 50.5	60	30
Grecja	320 ~ 460	49.5 ~ 50.5	180	30
Francja	320 ~ 460	47.5 ~ 50.4	60	30
Metro	346 ~ 416	49 ~ 51	60	30
Tajlandia	342 ~ 418	48 ~ 51	60	30
GB19964	320 ~ 480	48 ~ 52	60	30
Lokalny	320 ~ 480	45 ~ 55	60	30
60Hz	320 ~ 480	58 ~ 62	60	30

10. Zapewnienie jakości

W przypadku wystąpienia wad produktu w okresie gwarancyjnym, KSTAR lub jego partner zapewni bezpłatny serwis lub wymieni produkt na nowy.

Dowody

W okresie gwarancyjnym klient powinien dostarczyć fakturę zakupu produktu wraz z datą. Ponadto znak towarowy na produkcie musi być nieuszkodzony i czytelny. W przeciwnym razie KSTAR ma prawo odmówić honorowania gwarancji jakości.

Warunki

-Po wymianie niekwalifikowane produkty będą przetwarzane przez KSTAR.

-Klient wyznaczy firmie KSTAR lub jej partnerowi rozsądny termin na naprawę wadliwego urządzenia.

Wyłączenie odpowiedzialności

W następujących okolicznościach KSTAR ma prawo odmówić honorowania gwarancji jakości:

-Upłynął okres bezpłatnej gwarancji na całe urządzenie/części.

-Urządzenie zostało uszkodzone podczas transportu.

-Urządzenie jest nieprawidłowo zainstalowane, zamontowane lub używane.

-Urządzenie działa w trudnych warunkach, zgodnie z opisem w niniejszej instrukcji.
 -Usterka lub uszkodzenie jest spowodowane instalacją, naprawą, modyfikacją lub demontażem wykonanym przez usługodawcę lub personel spoza firmy KSTAR lub jej autoryzowanego partnera.

-Usterka lub uszkodzenie jest spowodowane użyciem niestandardowych lub innych niż KSTAR.

Komponenty lub oprogramowanie.

-Zakres instalacji i użytkowania wykracza poza wymagania odpowiednich norm międzynarodowych.

-Uszkodzenia są spowodowane nieoczekiwanymi czynnikami naturalnymi.

W przypadku wadliwych produktów w którymkolwiek z powyższych przypadków, jeśli klient zażąda konserwacji, płatna usługa konserwacji może być świadczona w oparciu o ocenę KSTAR.

11. Informacje kontaktowe

18 oddziałów zagranicznych

Przemysł falowników PV Przedsprzedaż : (86)0755-89741234 Ext 8151 Przemysł falowników PV Obsługa posprzedażna: (86)0755-89741234 Ext 8729 Globalna skrzynka pocztowa usług zagranicznych: overseas service@kstar.com.cn